X-Ray Crystal Structure Analysis of Papyriogenin A

By Sakae Amagaya, Makoto Takai, and Yukio Ogihara*
(Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuhoku, Nagoya, Japan)
and Yoichi Ittaka
(Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyoku, Tokyo, Japan)

Summary The crystal structure of a new oleanane type triterpene, papyriogenin A , has been shown by X-ray analysis to be 3,21 -dioxo-oleana-11,13(18)-diene-28-oic acid.

A new glycoside, papyrioside L-II, has been isolated from the leaves of Tetrapanax papyferum (Araliaceae). Acid
hydrolysis of papyrioside L-II gave a new pentacyclic triterpene, papyriogenin A, having a heteroannular diene (u.v. 243, 252 and 260 nm), a carboxy and two carbonyl groups. The parent glycoside however shows only end absorption in its u.v. spectrum. As a preliminary to the determination of the structure of papyrioside L-II, the structure of the derived aglycone was determined by X-ray crystallography.

Figure
Crystal data: Papyriogenin A, m.p. $262-264{ }^{\circ} \mathrm{C}, \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{4}$, space group $P 2_{1} 2_{1} 2_{1}$, orthorhombic, $a=18 \cdot 308, b=21 \cdot 443$, $c=6.562 \AA$ and $Z=4$. Intensity data were collected using $\mathrm{Cu}-K_{\alpha}$ radiation and an automatic four-circle difractometer and 1688 independent reflections were observed.

The structure was solved by direct methods using the program MULTAN. Block-matrix, least-squares refinement anisotropic temperature factors for C and O and isotropic temperature factors for H converged to $R=\mathbf{0 . 0 5 3}$ for observed reflections.

The structure (Figure) is fully consistent with the spectral and chemical data. The existence of the intermolecular hydrogen bond between $\mathrm{OH}(28)$ and $\mathrm{O}(21)$ in the crystalline state [distance between $\mathrm{O}(28)$ and $\mathrm{O}(21) 2 \cdot 79 \AA$] inhibits the association of the carboxy group and explains the high frequency CO absorption at $1730 \mathrm{~cm}^{-1}$ compared with that of oleanolic acid ($1690 \mathrm{~cm}^{-1}$).

